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1. Introduction 
The Kalman filter is widely used in numerous 

tasks of synthesizing and designing systems for 
managing dynamic objects of various functional 
purposes [1-9]. The Kalman filter provides an unbiased 
estimate with minimal variance about the state of a 
discrete linearly varying dynamic system, the input and 
output of which are distorted by Gaussian white noise 
with an additive character. This approach was extended 
to continuous dynamical systems by Kalman and Bucy 
with a linear character [2,4].  

The Kalman filter has one major drawback 
[3,4,10]. The equations used in the optimal filter require 
precise knowledge of the dynamic equations of the 
system and the statistics of random variables, including 
the need to know the transition matrices of the system 
and the covariance of disturbances such as additive 
white noise. However, usually only their estimates are 
available. Recently, Kalman filter schemes [1,3,4,11] 
have appeared in order to circumvent this problem. 
These schemes are commonly referred to as "adaptive 
filters". Various adaptive filters can be grouped 
according to the principle of identifying undefined 
parameters, heuristic weighting coefficients, or the 
absence of correlation of residual terms.  

Theoretically and practically, the synthesis of 
control systems for dynamic objects very often 
addresses estimation issues in which measurement 
uncertainty is represented as an additive purely random 
sequence or white noise. At the same time, there are 
estimation problems [2,3,4,10,12] when an additive 
Markov sequence, i.e. sequentially correlated or non-

white noise, is a more accurate model of uncertainty in 
measurements. 

When using systems used to control dynamic 
objects, the structural and parametric data of the 
controller do not have a dependence associated with the 
structure and parameters of the observer. This, in turn, 
makes it possible to use well-known control laws, and in 
the future, the possibility of adapting them using the 
evaluation contour. It should be borne in mind that the 
use of the given structure will be convenient in the event 
that there is a need to modernize or adapt the existing 
management system. When studying the evaluation 
algorithm with relatively high performance, the 
qualitative indicators of the adaptive system are not 
much inferior to the non-adaptive system in terms of 
minimum indicators. But even at the same time, during 
the period of transients carried out in the observer, the 
qualitative indicators of a closed system may have 
deteriorations reaching the loss of asymptotic stability. 
Such disadvantages can be eliminated by increasing the 
speed of estimation algorithms in areas with large 
deviations. 

In general, considering the formulation of the 
problem, multiple observations may contain certain 
white noises, while non-white Markov-type noises may 
not contain noise as a whole or be considered as some 
combination of the three studied possibilities. Following 
from this, in further descriptions, under the terminology 
"non-white noise" we will understand the presence of 
Markov-type noise or the non-participation of noise as a 
whole in one or more dimensions

2. Materials and Methods 
Consider a linear dynamical system described by the equation 

𝑥𝑥𝑖𝑖+1 = 𝐴𝐴𝑖𝑖+1|𝑖𝑖𝑥𝑥𝑖𝑖 + Г𝑖𝑖+1|𝑖𝑖𝑤𝑤𝑖𝑖, (1) 
𝑧𝑧𝑖𝑖+1 = 𝐻𝐻𝑖𝑖+1𝑥𝑥𝑖𝑖+1 + 𝑣𝑣𝑖𝑖+1 (2) 

for 𝑖𝑖 = 0,1,2, … with an initial condition 𝑥𝑥0 and a 
measurement matrix 𝐻𝐻𝑖𝑖+1. 
The measurement error 𝑣𝑣𝑖𝑖+1 is identified with the state 
vector of some additional linear dynamic system 
(forming filter) with a transition matrix 𝛹𝛹𝑖𝑖 and a 
perturbation vector 𝜉𝜉𝑖𝑖: 𝑣𝑣𝑖𝑖+1 = 𝛹𝛹𝑖𝑖𝑣𝑣𝑖𝑖 + 𝜉𝜉𝑖𝑖 for 𝑖𝑖 = 1,2, … 
with an initial condition 𝑣𝑣0. 
It is assumed that perturbations {𝑤𝑤𝑖𝑖, 𝑖𝑖 = 0,1,2, … } and 
{𝜉𝜉𝑖𝑖, 𝑖𝑖 = 0,1,2, … } – are sequences of random vectors 
with known correlation matrices 𝐸𝐸[𝑤𝑤𝑖𝑖𝑤𝑤𝑖𝑖𝑇𝑇] =
𝑄𝑄𝑖𝑖, 𝐸𝐸[𝜉𝜉𝑖𝑖𝜉𝜉𝑖𝑖𝑇𝑇] = 𝑅𝑅𝑖𝑖, where E – is the averaging operator 

and "т" is the transposition operation. These two 
successive equations do not depend on each other and 
also do not depend on the initial conditions 𝑥𝑥0, 𝑣𝑣0. 
With mutually uncorrelated errors {𝑣𝑣𝑖𝑖, 𝑖𝑖 = 0,1,2, … } 
𝐸𝐸[𝑣𝑣𝑖𝑖𝑣𝑣𝑖𝑖𝑇𝑇] = 𝑉𝑉𝑖𝑖𝛿𝛿𝑘𝑘𝑘𝑘, where 𝛿𝛿𝑘𝑘𝑘𝑘  –  is the symbol called 
Kronecker, is optimal in the form of a minimum of the 
variance estimate 𝑥𝑥�𝑖𝑖|𝑖𝑖 of the state vector 𝑥𝑥𝑖𝑖 of the system 
(1), based on measurements {𝑧𝑧𝑘𝑘, 𝑘𝑘 = 1,2, … , 𝑖𝑖 } of the 
form (2), it is formed according to the recurrent Kalman 
algorithm [1-11]:

𝑥𝑥�𝑖𝑖|𝑖𝑖 = 𝑥𝑥�𝑖𝑖|𝑖𝑖−1 + 𝐾𝐾𝑖𝑖�𝑧𝑧𝑖𝑖 − 𝐻𝐻𝑖𝑖𝑥𝑥�𝑖𝑖|𝑖𝑖−1� (3) 
𝑥𝑥�𝑖𝑖|𝑖𝑖−1 = 𝐴𝐴𝑖𝑖|𝑖𝑖−1𝑥𝑥�𝑖𝑖−1|𝑖𝑖−1 (4) 
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𝐾𝐾𝑖𝑖 = 𝑃𝑃𝑖𝑖|𝑖𝑖−1𝐻𝐻𝑖𝑖𝑇𝑇(𝐻𝐻𝑖𝑖𝑃𝑃𝑖𝑖|𝑖𝑖−1𝐻𝐻𝑖𝑖𝑇𝑇 + 𝑉𝑉𝑖𝑖)−1 (5) 
𝑃𝑃𝑖𝑖|𝑖𝑖−1 = 𝐴𝐴𝑖𝑖|𝑖𝑖−1𝑃𝑃𝑖𝑖−1|𝑖𝑖−1𝐴𝐴𝑖𝑖|𝑖𝑖−1𝑇𝑇 + Г𝑖𝑖|𝑖𝑖−1𝑄𝑄𝑖𝑖−1Г𝑖𝑖|𝑖𝑖−1𝑇𝑇  (6) 

𝑃𝑃𝑖𝑖|𝑖𝑖 = (𝐼𝐼 − 𝐾𝐾𝑖𝑖𝐻𝐻𝑖𝑖)𝑃𝑃𝑖𝑖|𝑖𝑖−1 (7) 
 

for 𝑖𝑖 = 1,2, …, where I – is a unit matrix, and the initial 
conditions for equations (4) and (6) are set, respectively, 
by an a priori estimate 𝑥𝑥�0|0 of the initial state vector 𝑥𝑥0 
and the correlation matrix 𝑃𝑃0|0 of its error 𝑥𝑥�0|0 = 𝑥𝑥�0|0 −
𝑥𝑥0, uncorrelated with {𝑤𝑤𝑖𝑖, 𝜉𝜉𝑖𝑖, 𝑖𝑖 = 1,2, … }. In this case, 
𝑃𝑃𝑖𝑖|𝑖𝑖 is a correlation matrix of the error of the optimal 
estimate 𝑥𝑥�𝑖𝑖|𝑖𝑖 of the current state 𝑥𝑥𝑖𝑖, calculated using 
formulas (5) – (7) without using measurements 𝑧𝑧𝑖𝑖. 
To solve the estimation problem under the influence of 
additive noise, the following algorithms can be proposed 
[2-4,13-14]. It is assumed that the statistical property of 
system noise is known. However, in real time, the 
process noise covariance matrix Q or the observation 
noise variance matrix R are often unknown. In addition, 
these parameters may change over time. Therefore, an 

adaptive Kalman filter must be designed to adjust Q and 
R, where it is important to increase the accuracy and 
stability of filtration. 
Thus, we assume an adaptive filtering algorithm based 
on the maximum a posteriori estimate [13-15]. 
Subsequently, the algorithm has the ability to evaluate 
unknown time-varying noise. The specific calculation 
process is as follows: 
𝑥𝑥�0 = 𝐸𝐸[𝑥𝑥0], 𝑃𝑃0 = 𝐸𝐸[(𝑥𝑥0 − 𝑥𝑥�0)(𝑥𝑥0 − 𝑥𝑥�0)𝑇𝑇], 
𝑄𝑄�0 = 𝑄𝑄(0), 𝑅𝑅�0 = 𝑅𝑅(0) during initialization 𝑖𝑖 = 0. 

| 1 | 1 1| 1 | 1 | 1 1| 1 | 1 1
ˆˆ ˆ , T

i i i i i i i i i i i i i i ix A x P A P A Q− − − − − − − − − −= = −  
during iteration 𝑖𝑖 = 1,2, . .., that is, the time update. 
Let's evaluate the statistical properties of measurement 
noise when updating measurement results: 
 

𝑧̃𝑧𝑖𝑖 = 𝑧𝑧𝑖𝑖 − 𝐻𝐻𝑖𝑖𝑥𝑥�𝑖𝑖|𝑖𝑖−1, (8) 

𝑅𝑅�𝑖𝑖 = (1 − 𝑑𝑑𝑖𝑖)𝑅𝑅�𝑖𝑖−1 + 𝑑𝑑𝑖𝑖(𝑧̃𝑧𝑖𝑖𝑧̃𝑧𝑖𝑖𝑇𝑇 − 𝐻𝐻𝑖𝑖𝑃𝑃𝑖𝑖|𝑖𝑖−1𝐻𝐻𝑖𝑖𝑇𝑇). (9) 
 
Let's estimate the value of the state, after correction we will calculate the a posteriori variance of the state: 

𝐾𝐾𝑖𝑖 = 𝑃𝑃𝑖𝑖|𝑖𝑖−1𝐻𝐻𝑖𝑖𝑇𝑇(𝐻𝐻𝑖𝑖𝑃𝑃𝑖𝑖|𝑖𝑖−1𝐻𝐻𝑖𝑖𝑇𝑇 + 𝑅𝑅�𝑖𝑖)−1, (10) 

𝑥𝑥�𝑖𝑖|𝑖𝑖 = 𝑥𝑥�𝑖𝑖|𝑖𝑖−1 + 𝐾𝐾𝑖𝑖𝑧̃𝑧𝑖𝑖, (11) 

𝑃𝑃𝑖𝑖 = (𝐼𝐼 − 𝐾𝐾𝑖𝑖𝐻𝐻𝑖𝑖)𝑃𝑃𝑖𝑖|𝑖𝑖−1. (12) 

Then we will evaluate the statistical properties of the 
process noise in accordance with 

1 | | 1 1| 1 | 1
ˆ ˆ(1 ) ( ),T T T

i i i i i i i i i i i i i i i iQ d Q d K z z K P A P A− − − − −= − + + − 

where 𝑑𝑑𝑖𝑖 = (1 − 𝑏𝑏)/(1 − 𝑏𝑏𝑖𝑖+1), 𝑏𝑏 it is a factor of 
forgetting, and 0 < 𝑏𝑏 < 1. 
Now let's consider the adaptive filtering approach for 
nonlinear systems with additive noise. Both the process 

equations and the measurement equations are nonlinear 
according to 

𝑥𝑥𝑖𝑖 = 𝑓𝑓(𝑥𝑥𝑖𝑖−1) + 𝑤𝑤𝑖𝑖−1, (13) 

𝑧𝑧𝑖𝑖 = ℎ(𝑥𝑥𝑖𝑖) + 𝑣𝑣𝑖𝑖, (14) 

where ( )f   and ( )h   they are non-linear functions 

 
3. Results and Discussion 
The adaptive assessment algorithm is as follows: 

0 0ˆ [ ],x E x=  { }0 0 0 0 0ˆ ˆ[( )( ) ] ,TS chol E x x x x= − −  (15) 

0 0
ˆ ,Q S= { }0 0 0 0 0

ˆ ˆ ˆ[( )( ) ] .TR chol E z z x z= − −  (16) 

1 1 1 1 1 1ˆ ˆ ˆ[ ]i i i i i ix x S x Sχ γ γ− − − − − −= + − , при 1,2,...,i = ∞ . (17) 

Let's write the time update equations as follows: 
𝜒̂𝜒𝑖𝑖∗ = 𝑓𝑓(𝜒𝜒𝑖𝑖−1), (18) 
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𝑥𝑥�𝑖𝑖|𝑖𝑖−1 = �𝑊𝑊𝑘𝑘
(𝑚𝑚)𝜒̂𝜒𝑖𝑖,𝑘𝑘∗

2𝐿𝐿

𝑘𝑘=0

, (19) 

𝑆𝑆𝑖𝑖|𝑖𝑖−1 = 𝑞𝑞𝑞𝑞 �[�𝑊𝑊1
(𝑐𝑐)(𝜒̂𝜒𝑖𝑖,1:2𝐿𝐿

∗ − 𝑥𝑥�𝑖𝑖|𝑖𝑖−1)�𝑄𝑄�𝑖𝑖−1]�, (20) 

𝑆𝑆𝑖𝑖|𝑖𝑖−1 = 𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 �[𝑆𝑆𝑖𝑖|𝑖𝑖−1, 𝜒̂𝜒𝑖𝑖,0∗ − 𝑥𝑥�𝑖𝑖|𝑖𝑖−1,𝑊𝑊0
(𝑐𝑐)]�. (21) 

 
 
 
 
 
 
 
Then we calculate the square root of the measured noise matrix: 

*
1 1

ˆ ˆ( ),i iZ h χ− −=  (22) 
2

* ( ) *
1 1,

0

ˆˆ ,
L

m
i k i k

k
z W Z− −

=

=∑  (23) 

* *
1 1 1ˆi i iz z z− − −= −  (24) 

{ }** *
1 1

ˆ1 ,| |, ,i i i iR cholupdate d R z d− −= −   (25) 

{ }* ** * * ( )
1|0:2 1

ˆ ˆ , ,c
i L i i kR cholupdate R Z z d W− −= − −  (26) 

{ }*ˆ
iR diag R=  (27) 

where; 

| 1 | 1 | 1 | 1 | 1 | 1ˆ ˆ ˆ ˆ[ ],i i i i i i i i i i i ix x S x Sχ γ γ− − − − − −= + −  (28) 

| 1 | 1
ˆ ˆ( ),i i i iZ h χ− −=  (29) 

2
( )

| 1 | 1,
0

ˆˆ ,
L

m
i i k i i k

k
z W Z− −

=

=∑  (30) 

*
1 1 | 1ˆ .i i i iz z z− − −= −  (31) 

The measurement update equations are as follows: 

2
( )

( ) | 1, | 1 | 1, | 1
0

ˆˆ ˆ ˆ( )( ) ,
L

c T
xz i k i i k i i i i k i i

k
P W x Z zχ − − − −

=

= − −∑  (32) 

{ }( )
( ) 1 | 1,1:2 | 1

ˆ ˆˆ( ) ,c
z i i i L i i iS qr W Z z R− −

 = −  
 (33) 

{ }( )
( ) ( ) | 1,0 | 1 0

ˆ ˆ[ , , ]c
z i z i i i i iS cholupdate S Z z W− −= −  (34) 

( )( ) ( )

( )

/
,

T
xz i z i

i
z i

P S
K

S
=  (35) 

| 1ˆ ˆi i i i ix x K z−= +   (36) 
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( ) ,i z iU K S=  (37) 

( ) | 1{ , , 1}.z i i iS cholupdate S U−= −  (38) 

Let's estimate the square root of the process noise matrix in accordance with; 

{ }**
1 | 1

ˆ ˆ ˆ,| |,i i i i iQ cholupdate Q x x d− −= −  (39) 

{ }* ** , , iQ cholupdate Q U d= −  (46) 

( ){ }*ˆ ,iQ diag diag Q=  (41) 

 
 
where 𝑑𝑑𝑖𝑖 = (1 − 𝑏𝑏)/(1 − 𝑏𝑏𝑖𝑖+1) and 𝑏𝑏 it is a factor of 
forgetting, as a rule 0 < 𝑏𝑏 < 1.   

The weights (𝑊𝑊𝑘𝑘
(𝑚𝑚) and 𝑊𝑊𝑘𝑘

(𝑐𝑐)) of the mean value and 
covariance are given by the formula; 

( )
0 ,mW

L
λ
λ

=
+

 (42) 

( ) 2
0 1 ,cW

L
λ α β
λ

= + − +
+

 (43) 

( ) ( ) 1 , 1,..., 2 ,
2( )

m c
k kW W k L

L λ
= = =

+
 (44) 

where 𝜆𝜆 = 𝛼𝛼2(𝐿𝐿 + 𝜅𝜅) it is a scaling parameter. 
The constant α  defines the spread of sigma points 
around the average value, which is usually set to a small 
positive value (for example, 10−4 ≤ 𝛼𝛼 ≤ 1). Constant 
𝜅𝜅 ≥ 0 is a secondary scaling parameter. 𝛽𝛽 ≥ 0is used to 
account for prior knowledge of the distribution (for 

Gaussian distributions, the optimal value is 𝛽𝛽 = 2) [4-
10]. In addition, 𝛾𝛾 = √𝐿𝐿 + 𝜆𝜆. Here we used three 
powerful linear algebra methods: QR decomposition 
(𝑞𝑞𝑞𝑞{}), updating the Xoleski coefficient (𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜{}) 
and efficient least squares methods (/), which are briefly 
discussed in [13,14,16
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